Exercises 2.2.6.

- (1) Prove that compositions of continuous functions are continuous.
- (2) Show that closed subsets of complete metric spaces are complete.
- (3) Show that Hausdorffness is a topological invariant.
- (4) Prove that the unit circle and \mathbb{R} cannot be homeomorphic, and that none of them are homeomorphic to \mathbb{R}^2 .
- (5) Show that the connected components of $\mathbb{Q} \subset \mathbb{R}$ in the relative topology are the points in \mathbb{Q} , and none of these are open.
- (6) Prove that the graph of the function $f: (0, \infty) \to \mathbb{R}$ given by $f(x) = \sin(1/x)$ together with the origin (0,0) is a connected subset in the relative topology from \mathbb{R}^2 , but that it is not arcwise connected.
- (7) Show that the continuous real image of a compact connected set is a closed interval, that is, of the form [a, b].
- (8) Give examples of continuous functions that are not uniformly continuous, and that are both.