diff --git a/content/Lectures/Lecture 30 - Residue Theorem.md b/content/Lectures/Lecture 30 - Residue Theorem.md new file mode 100644 index 00000000..a58fe6f5 --- /dev/null +++ b/content/Lectures/Lecture 30 - Residue Theorem.md @@ -0,0 +1,86 @@ +--- +lecture: 30 +date: 2025-05-08 +--- + +# Integrals over Real Line - Residue Theorem +(Continuing from the previous lecture) +- Something similar can be done for the **lower** half plane +# Check if the extra contribution goes to 0 +- We need a criterion to decide when $\int_{H_{R}} f(z) \, dz$ goes to zero for $R \to \infty$. +## Lemma +Let $H_{R}$ be as above. +Suppose that $\mid f(z) \mid \leq M_{R}$ for all $z \in H_{R}$, where $M_{R}$ depends only on the radius $R$. +If $\lim_{ R \to \infty } M_{R} \times R = 0$ then $\lim_{ R \to \infty } \int_{H_{R}} f(z) \, dz = 0$. +### Proof +Using $\mid f(z) \mid \leq M_{R}$ we have +$$\mid \int_{H_{R}} f(z) \, dz \mid \leq \int_{H_{R}} \mid f(z) \mid \, dz$$ +$$\leq M_{R} \int_{H_{R}} 1 \, dz = M_{R} \times \pi R$$ +Then we get +$$\lim_{ R \to \infty } \mid \int_{H_{R}} \, dz \leq pi \times \lim_{ R \to \infty } $$ (incomplete equation) + +## Example +Consider the function $f(x) = \frac{1}{1+x^2}$. +We want to compute $\int_{-\infty}^{+\infty} f(x) \, dx$. + +We can use the previous results. +We extend $f$ to the complex-valued function +$$f(z) = \frac{1}{1+z^2} = \frac{1}{(z+i)(z-i)}$$ +We have **two** [[singularities]], but only one in the **upper** half-plane, that is $z=i$. + +(Quick and dirty computation to check) +Let's assume for now that $\lim_{ R \to \infty } \int_{H_{R}} f(z) \, dz = 0$ then +$$\int_{-\infty}^{+\infty} \frac{1}{1+x^2} \, dx = 2\pi i \times \text{Res}_{z=i} \frac{1}{1+z^2}$$ +$$= 2\pi i \times \lim_{ z \to i } (z - i) \frac{1}{(z-i)(z+i)}$$ +$$= 2\pi i \times \frac{1}{2i} = \pi$$ +Now we check that the integral over $H_{R}$ goes to zero using the lemma. + +We can use the Reverse [[Triangle Inequality]] $| \|u \|- \| v \| \mid \leq \|u - v \|$, valid for any [[Norm]] $\| \cdot \|$. we obtain +$$\mid z^2 + 1 \mid = \mid z^2 - (-1) \mid$$ +$$\geq | |z|^{2} - 1 |$$ +$$= R^{2} - 1 \ \text{(For}\ R \gt 1\text{)}$$ +Then +$$| f(z) | = \frac{1}{| 1 + z^2 |} \leq \frac{1}{R^2 -1}$$ +We take $M_{R} = \frac{1}{R^2 - 1}$. We get +$$\lim_{ R \to \infty } M_{R} \times R = \lim_{ R \to \infty } \frac{R}{R^2 - 1} = 0$$ +This gives the result for our original integral $\int_{-\infty}^{+\infty} f(x) \, dx$. +# Fourier Transform (Applications) +These correspond to integrals of the following type +$$\widetilde{f}(\omega) = \int_{-\infty}^{+\infty} f(t) e^{i\omega t} \, dt $$ +We can use the [[Residue Theorem]] to compute some of these integrals. +## Example +Consider $f(t) = \frac{1}{a^2 + t^2}$ where $a \gt 0$. +We want to compute the Fourier transform +$$\widetilde{f}(\omega) = \int_{-\infty}^{+\infty} \frac{e^{i \omega t}}{a^2 + t^2} \, dt $$ +We apply the [[Residue Theorem]] to +$$g(z) = \frac{e^{i \omega z}}{a^2 + z^2}$$ +We need to distinguish between the two cases where $\omega \geq 0$ and $\omega \lt 0$. +Write $z = x + iy$ and consider +$$|e^{i \omega g z} | = | e^{i \omega x} e^{- \omega y} | = e^{-\omega y}$$ +This either decays or grows depending on the sign of $\omega$. + +For $\omega \geq 0$ we get +$$| g(z) | = \frac{e^{-\omega y}}{| a^2 + z^2 |}$$ +Which goes to zero in the **upper** half-plane (where $y \geq 0$). +Then the path gives the result: +$$\widetilde{f}(\omega) = \int_{-\infty}^{+\infty} \frac{e^{i \omega t}}{a^2 + t^2} \, dt = 2 \pi i \times \text{Res}_{z = ia}\ g(z)$$ +> [!note] Note that +> $z^2 + a^2 = (z + ia)(z-ia)$ with $z = ia$ in the **upper** half-plane + +$$= 2 \pi i \times \lim_{ z \to ia } (z-ia) \times \frac{e^{i \omega z}}{(z-ia)(z+ia)}$$ +$$= 2\pi i \times \frac{e^{-\omega a}}{2ia} = \frac{\pi}{a}e^{-\omega a}$$ +This is valid for $\omega \geq 0$. + +For $\omega \lt 0$, we want to close the path in the **lower** half-plane (that is $y \leq 0$). +This is so that $| e^{i \omega z} | = e^{- \omega y}$ does not blow up. + +Then we consider that the lower half has to go in a clockwise direction (which is the opposite direction to what angles on a complex plane usually go). +Note that this has **negative** orientation (clockwise) to apply the [[Residue Theorem]] (which needs **positive orientation**) we add a **minus** sign. + +Then we compute +$\widetilde{f}(\omega) = \int_{-\infty}^{+\infty} \frac{e^{i \omega t}}{a^2 + t^2} \, dt$ +Here we need the poles of $g(z)$ in the **lower** half-plane (which is $z = -ia$). Also to compensate for going in the clockwise direction we add the extra minus: +$$= -2\pi i \times \text{Res}_{z = -ia} g(z)$$ +$$= - 2 \pi i \times \lim_{ z \to -ia } (z + ia) \frac{e^{i \omega z}}{(z + ia)(z-ia)} = -2 \pi i \times \frac{e^{\omega a}}{-2 i a} = \frac{\pi}{a} e^{\omega a}$$ +The two cases can be combined to give the result: +$$\widetilde{f}(\omega) = \frac{\pi}{a}e^{-a|\omega|}$$ \ No newline at end of file diff --git a/content/index.md b/content/index.md index 4f9595e3..f184dec8 100644 --- a/content/index.md +++ b/content/index.md @@ -27,4 +27,5 @@ title: ACIT4330 Lecture Notes - [[Lecture 17 - Lp Spaces]] # Complex Analysis - [[Lecture 18 - Complex Analysis]] -- [[Lecture 19 - Derivatives]] \ No newline at end of file +- [[Lecture 19 - Derivatives]] +- [[Lecture 30 - Residue Theorem|Last Lecture - Residue Theorem]] \ No newline at end of file