Quartz sync: Mar 10, 2025, 12:16 PM
All checks were successful
/ Deploy to Cloudflare Pages (push) Successful in 1m5s

This commit is contained in:
Anthony Berg 2025-03-10 12:16:34 +01:00
parent 1113950d7e
commit d5e48ae3a7
5 changed files with 110 additions and 9 deletions

View File

@ -0,0 +1,11 @@
# Definition
Have [[Measure|measure]] $\mu$ on $X$, and $f_{n} : X \to [0, \infty]$ [[Measurable|measurable]]. Then $\int \lim_{ n \to \infty } \inf f_{n} \, d\mu \le \lim_{ n \to \infty } \inf \int f_{n} \, d\mu$
> [!info] What is $\lim\inf$?
> Definition of [[Infimum|infimum]] (it is basically the opposite of a [[Supremum|supremum]]).
>
> $\{ x_{n} \} \subset [0, \infty]$
> $\lim_{ n \to \infty }\inf x_{n} = \sup_{m}\inf_{n \geq m} x_{n}$
>
> $\inf_{n \geq m} = y_{m} \leq y_{m+1} \leq \dots$

View File

@ -0,0 +1,7 @@
# Definition
A **vector space** is a set with elements, often called vectors, that can be added together and multiplied by numbers called scalars. These vector spaces must hold [[Properties of a Vector Space|these properties]].
There are different types of **vector spaces** that can exists, some of them being
- Real Vector Spaces
- [[Complex Vector Space|Complex Vector Spaces]]
- [[Normed Vector Space|Normed Vector Spaces]]

View File

@ -39,6 +39,7 @@ Then $A_{1} \subset A_{2} \subset A_{3} \subset \dots$ [[Measurable|measurable]]
> By the previous two lemmas, we have > By the previous two lemmas, we have
> $b \geq \lim_{ n \to \infty } \int_{A_{n}} f_{n} \, d\mu \geq \lim_{ n \to \infty } c \times \int_{A_{n}} s \, d\mu$ > $b \geq \lim_{ n \to \infty } \int_{A_{n}} f_{n} \, d\mu \geq \lim_{ n \to \infty } c \times \int_{A_{n}} s \, d\mu$
> > [!note]- Note on the $A_{n}$ > > [!note]- Note on the $A_{n}$
> >
> > $$\int_{A} \subset \int_{X}$$ > > $$\int_{A} \subset \int_{X}$$
> > $$A \subset X$$ > > $$A \subset X$$
> >
@ -50,15 +51,9 @@ Then $A_{1} \subset A_{2} \subset A_{3} \subset \dots$ [[Measurable|measurable]]
QED. QED.
# Corollary - Fatou's Lemma # Corollary - Fatou's Lemma
Have [[Measure|measure]] $\mu$ on $X$, and $f_{n} : X \to [0, \infty]$ [[Measurable|measurable]]. Then $\int \lim_{ n \to \infty } \inf f_{n} \, d\mu \le \lim_{ n \to \infty } \inf \int f_{n} \, d\mu$ Defined in the lecture here: [[Fatou's Lemma]]
> [!info] What is $\lim\inf$? > [!info] Definition
> Definition of [[Infimum|infimum]] (it is basically the opposite of a [[Supremum|supremum]]). > Have [[Measure|measure]] $\mu$ on $X$, and $f_{n} : X \to [0, \infty]$ [[Measurable|measurable]]. Then $\int \lim_{ n \to \infty } \inf f_{n} \, d\mu \le \lim_{ n \to \infty } \inf \int f_{n} \, d\mu$
>
> $\{ x_{n} \} \subset [0, \infty]$
> $\lim_{ n \to \infty }\inf x_{n} = \sup_{m}\inf_{n \geq m} x_{n}$
>
> $\inf_{n \geq m} = y_{m} \leq y_{m+1} \leq \dots$
## Proof ## Proof
Use [[Lebesgue's Monotone Convergence Theorem]] on $g_{m} = \inf_{n \geq m} f_{n}$. Use [[Lebesgue's Monotone Convergence Theorem]] on $g_{m} = \inf_{n \geq m} f_{n}$.
$g_{1} \leq g_{2} \leq \dots$ are [[Measurable|measurable]] functions. $g_{1} \leq g_{2} \leq \dots$ are [[Measurable|measurable]] functions.

View File

@ -0,0 +1,87 @@
---
lecture: 16
date: 2025-03-10
---
# Recap
Recap from the [[Lecture 15|previous]].
$L_{1}(\mu) = \left\{ \text{measure}\ f : \underbrace{X}_{\mu} \to \mathbb{C} \, | \, \underbrace{\int |f| \, d\mu}_{= \, \sup_{0 \leq s \leq |f|} \int s \, d\mu} \lt \infty \right\}$
$s = \Sigma_{i = 1}^{n} a_{i} \times X_{A_{i}}$
$\int s \, d\mu = \Sigma_{i=1}^{n} a_{i} \times \mu(A_{i})$
$f = \mathrm{Re} f + i \mathrm{Im} f = (\mathrm{Re} f)^{+} - (\mathrm{Re} f)^{-} + i((\mathrm{Im} f)^{+} - (\mathrm{Im} f)^{-})$
$0 \leq \int (\mathrm{Re} f)^{\pm} \, d\mu \leq \int |f| \, d\mu$
# Proposition
$L^{1} (\mu)$ is a [[Vector Space|vector space]] under [[Pointwise|pointwise]] operations, and the $\int : L^{1}(\mu) \to \mathbb{C} \, d\mu$ is linear, and $| \int f \, d\mu | \leq \int |f| \, d\mu$.
## Proof
Let $f, g \in L^{1}(\mu)$, $a \in \mathbb{C}$.
Assume first that $f, g \geq 0$ [[Simple Function|simple]] with distinct values $a_{i}$ and $b_{i}$, let $A_{i} = \{ x \in X \, | \, f(x) = a_{i} \}$ and $B_{j} = \{ x \in X \, | \, g(x) = b_{j} \}$
Then $\int_{A_{i} \cap B_{j}} (f + g) \, d\mu = (a_{i} + b_{j}) \times \mu (A_{i} \cap B_{j})$
$= a_{i} \times \mu (A_{i} \cap B_{j}) + b_{j} \times \mu(A_{i} + B_{j})$
$= \int_{A_{i} + B_{j}} f \, d\mu + \int_{A_{i} + B_{j}} g \, d\mu$
> [!note]
> $X \underbrace{=}_{\text{disjoint union}} \cup(A_{i} \cap B_{j})$
> $A \mapsto \int_{A} s \, d\mu$
> [[Measure]] $L1$.
$\implies \int_{X} (f + g) \, d\mu = \int f \, d\mu + \int g \, d\mu$
LHS $= \Sigma_{i j} \int (f + g) \, d\mu = \Sigma_{i j} \left( \int_{A_{i} \cap B_{j}} f \, d\mu + \int_{A_{i} \cap B_{j}} g \, d\mu\right)$
$= \Sigma_{i j} \int_{A_{i} \cap B_{j}} f \, d\mu + \Sigma_{i j} \int_{A_{i} \cap B_{j}} g \, d\mu$
$=^{L_{1}} \int_{X} f \, d\mu + \int_{X} g \, d\mu$
$L2$:
$0 \leq s_{1} \leq s_{2} \leq \dots \leq f$
$f=\lim_{ n \to \infty } s_{n}$
By $L_{2}$ and [[Lebesgue's Monotone Convergence Theorem]] (LMCT) $\implies \int$ is additive for all non-negative [[Measurable|measurable]] functions $f$ and $g$.
$\int (f + g) \, d\mu =^{L_{2}} \int \lim_{ n \to \infty } (s_{n} + s_{n}') \, d\mu =^{\text{LMCT}} \lim_{ n \to \infty } \int (s_{n} + s_{n}') \, d\mu$
(from above) $= \lim_{ n \to \infty } (\int s_{n} \, d\mu + \int s_{n}' \, d\mu$
($\lim$ splits) $\lim_{ n \to \infty } \int s_{n} \, d\mu + \lim_{ n \to \infty } \int s_{n}' \, d\mu$
$=^{\text{LMCT}} \int f \, d\mu + \int g \, d\mu$
For the complex case we have $\int \underbrace{| af + g |}_{\leq |a| \times |f| + |g|} \, d\mu \leq \int (| a | \times |f| + |g|) \, d\mu$
$= \int |a| \times |f| \, d\mu + \int |g| \, d\mu = |a| \times \underbrace{\int |f|}_{\lt \infty} \, d\mu + \underbrace{\int |g| \, d\mu}_{\lt \infty} < \infty$, so $af + g \in L^{1}(\mu)$ when $f, g \in L^{1}(\mu)$.
So $L^{1}(\mu)$ is a [[Vector Space|vector space]].
> [!info]- Why it's $af + g$ and not $af + bg$
> Usually you would use $af + bg$ and have to prove for the $bg$ part as well, but $af + g$ is enough for the proof as you can do:
> $$af + bg = af + (bg + 0)$$
> as the parts in the bracket would belong in $L1$ as well.
Then use the definition of the integral for complex functions to see that it is additive. Clearly $\int a f \, d\mu = a \int f \, d\mu$ when $a \geq 0$. For $a \lt 0$ use $(-g)^{\pm} = g^{\mp}$ etc. Check for $a = i$, but this is okay as $\int i f \, d\mu = \int i (\mathrm{Re} f + i \mathrm{Im} f) \, d\mu = \int (-\mathrm{Im} f + i \mathrm{Re} f) \, d\mu = - \int \mathrm{Im}f \, d\mu + i \int \mathrm{Re} f \, d\mu = i \times \int f \, d\mu$.
So $\int a f \, d\mu = a \int f \, d\mu, \; \forall a \in \mathbb{C}$, and the integral is a linear function.
Finally, pick $b \in \mathbb{C}$ such that $| \int f \, d\mu | = b \times \underbrace{\int f \, d\mu}_{z}$
> [!note]- What is happening at $z$
> Remember the rules of complex numbers:
> $$|z| = b \times z$$
> $$b = \frac{|z|}{z}$$
(linear) $= \int b f \, d\mu = \int \underbrace{\mathrm{Re}(b f)}_{\leq |b f|} \, d\mu \leq \int |b f| \, d\mu = \int \underbrace{|b|}_{=1} \times |f| \, d\mu = \int |f| \, d\mu$
QED.
# Lebesgue's Dominated Convergence Theorem
It is a theorem for complex valued functions.
Also see the [[Lebesgue's Dominated Convergence Theorem|definition]].
Let $\{ f_{n} \}$ be [[Measurable|measurable]] functions $f_{n} : X \to \mathbb{C}$, and $\mu$ [[Measure|measure]] on $X$. Assume $\exists g \in L^{1}$ such that all $f_{n} \leq g$.
Then $\lim_{ n \to \infty } \int f_{n} \, d\mu = \int \underbrace{\lim_{ n \to \infty } f_{n}}_{f} \, d\mu$.
If you have a measure so that the whole space is finite, $\mu(x) < \infty$:
$\implies \int 1 \, d\mu = \mu(x) < \infty$ (can use $g$ instead of the $1$)
## Proof
By [[Fatou's Lemma]]
$\int 2g \, d\mu \underbrace{=}_{f = \lim f_{n}} \int \lim_{ n \to \infty } \inf(\underbrace{2g - |f_{n} - f|}_{\geq 0}) \, d\mu$
(by [[Fatou's Lemma]]) $\leq \lim_{ n \to \infty } \inf \int (2g - |f_{n} - f|) \, d\mu$
(by [[#Proposition|previous proposition]]) $\int 2g \, d\mu + \lim_{ n \to \infty }\inf\left( -\int |f_{n} - f| \, d\mu \right)$
$= \int 2g \, d\mu - \lim_{ n \to \infty }\sup \int |f_{n} - f | \, d\mu$ so $\lim_{ n \to \infty } \sup \int |f_{n} - f \, d\mu \leq 0$, and $\lim_{ n \to \infty } \underbrace{\int |f_{n} - f| \, d\mu}_{\geq 0} \leq 0$, so $\lim_{ n \to \infty } \int |f_{n} - f| \, d\mu = 0$.
Then $\lim_{ n \to \infty } | \int f_{n} \, d\mu - \int f \, d\mu |$
(by [[#Proposition|previous proposition]]) $= \lim_{ n \to \infty } | \int (f_{n} - f) \, d\mu |$
(again, by [[#Proposition|previous proposition]]) $\leq \lim_{ n \to \infty } \int |f_{n} - f \, d\mu = 0$.
QED.
> [!example] Another example
>
> $$\lim_{ n \to \infty } \lim_{ m \to \infty } \frac{n}{m} = \lim_{ n \to \infty } 0 = 0$$
> Then swap the limits
> $$\lim_{ m \to \infty } \lim_{ n \to \infty } \frac{n}{m} = \lim_{ m \to \infty } \infty = \infty$$
> Which are two different numbers as $0 \neq \infty$.

View File

@ -23,3 +23,4 @@ title: ACIT4330 Lecture Notes
- [[Lecture 13 - Measure Theory]] - [[Lecture 13 - Measure Theory]]
- [[Lecture 14]] - [[Lecture 14]]
- [[Lecture 15]] - [[Lecture 15]]
- [[Lecture 16]]