generated from smyalygames/quartz
Quartz sync: Mar 3, 2025, 12:08 PM
All checks were successful
/ Deploy to Cloudflare Pages (push) Successful in 2m54s
All checks were successful
/ Deploy to Cloudflare Pages (push) Successful in 2m54s
This commit is contained in:
@@ -0,0 +1 @@
|
||||
**Borel $\sigma$-algebra** on a [[Topological Space|topological space]] $X$ is the one generated by $\tau$.
|
||||
@@ -1,8 +1,8 @@
|
||||
# Definition
|
||||
A $\sigma$-algebra in a set $X$ is a collection of subsets, so called measurable sets, of $X$ such that (the requirements are):
|
||||
1. $X \in M$
|
||||
2. $A \in M \implies A^{\complement} \in M$ ($X^{\complement} = \emptyset \in M$)
|
||||
3. $A_{n} \in M \implies \cup^{\infty}_{n=1} A_{n} \in M$ ($\implies \cap^{\infty}_{n=1} A_{n} = (\cup^{\infty}_{n=1}A^{\complement})^{\complement} \in M)$)
|
||||
2. $A \in M \implies A^{\complement} \in M$ ($A^{\complement} \equiv X \setminus A$) ($X^{\complement} = \emptyset \in M$)
|
||||
3. $A_{n} \in M \implies \cup^{\infty}_{n=1} A_{n} \in M$ ($\implies \cap^{\infty}_{n=1} A_{n} = (\cup^{\infty}_{n=1}A^{\complement})^{\complement} \in M)$)
|
||||
# Related Terminologies/Functions
|
||||
- [[Measurable]]
|
||||
- [[Measure]]
|
||||
Reference in New Issue
Block a user