Quartz sync: Apr 2, 2025, 4:55 PM
All checks were successful
/ Deploy to Cloudflare Pages (push) Successful in 2m16s
@ -0,0 +1,9 @@
|
|||||||
|
# Definition
|
||||||
|
A [[Complex Functions|complex function]] $f(z)$ can be seen as a function of two real variables. Hence
|
||||||
|
$$f(z) = f(x + iy) = f(x, y).$$
|
||||||
|
When interpreted appropriately.
|
||||||
|
|
||||||
|
> [!example] For instance
|
||||||
|
> $$f(z) = z^2 = (x + iy)^2 = x^2 - y^2 + 2ixy$$
|
||||||
|
|
||||||
|
Suppose $f$ is [[Differentiable|differentiable]], we should expect **relations** between $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.
|
@ -0,0 +1,4 @@
|
|||||||
|
# Definition
|
||||||
|
A function $f : D \to \mathbb{C}$ is **differentiable** at $z \in \mathbb{C}$ if the following limit exists
|
||||||
|
$$\lim_{ \Delta z \to \infty } \frac{f(z + \Delta z) - f(z)}{\Delta z}.$$
|
||||||
|
We denote by $f'(z)$.
|
@ -0,0 +1,4 @@
|
|||||||
|
# Definition
|
||||||
|
Let $f: D \to \mathbb{C}$ be a function with domain $D$.
|
||||||
|
|
||||||
|
We say that $f$ is **entire** if $f$ is **entire** if $f$ is [[Differentiable|differentiable]] everywhere (so $D = \mathbb{C}$).
|
@ -0,0 +1,8 @@
|
|||||||
|
# Definition
|
||||||
|
Let $f: D \to \mathbb{C}$ be a function with domain $D$.
|
||||||
|
|
||||||
|
We say that $f$ is **holomorphic** at $z_{0}$ if $f$ is [[Differentiable|differentiable]] in an [[Open Sets|open]] disk (entered at $z_{0}$).
|
||||||
|
|
||||||
|
> [!info] Remark on naming of "holomorphic"
|
||||||
|
> Many sources use the term **analytic** instead of holomorphic.
|
||||||
|
|
After Width: | Height: | Size: 11 KiB |
After Width: | Height: | Size: 18 KiB |
After Width: | Height: | Size: 11 KiB |
After Width: | Height: | Size: 18 KiB |
After Width: | Height: | Size: 21 KiB |
After Width: | Height: | Size: 62 KiB |
After Width: | Height: | Size: 21 KiB |
After Width: | Height: | Size: 62 KiB |
After Width: | Height: | Size: 9.5 KiB |
After Width: | Height: | Size: 16 KiB |
After Width: | Height: | Size: 9.2 KiB |
After Width: | Height: | Size: 16 KiB |
BIN
content/Exercises/Complex Analysis/Exercises week 1.pdf
Normal file
129
content/Lectures/Lecture 19 - Derivatives.md
Normal file
@ -0,0 +1,129 @@
|
|||||||
|
---
|
||||||
|
lecture: 19
|
||||||
|
date: 2025-03-24
|
||||||
|
---
|
||||||
|
# Differentiable
|
||||||
|
## Definition
|
||||||
|
A function $f : D \to \mathbb{C}$ is **differentiable** at $z \in \mathbb{C}$ if the following limit exists
|
||||||
|
$$\lim_{ \Delta z \to \infty } \frac{f(z + \Delta z) - f(z)}{\Delta z}.$$
|
||||||
|
We denote by $f'(z)$.
|
||||||
|
|
||||||
|
The same thing is also defined here: [[Differentiable]]
|
||||||
|
## Example
|
||||||
|
Consider $f(z) = z$. We have:
|
||||||
|
$$\frac{f(z + \Delta z) - f(z)}{\Delta z} = \frac{z + \Delta z}{\Delta z} = 1 .$$
|
||||||
|
Hence $f'(z) = 1$.
|
||||||
|
|
||||||
|
|
||||||
|
We have general results to compute derivatives, as in the real case.
|
||||||
|
# Proposition
|
||||||
|
Suppose $f$ and $g$ are differentiable at $z \in \mathbb{C}$. Then:
|
||||||
|
1. $(af(z) + bg(z))' = af'(z) + bg'(z)$ for any $a, b \in \mathbb{C}$,
|
||||||
|
2. $(f(z)g(z))' = f'(z) g(z) + f(z) g'(z)$,
|
||||||
|
3. Also a quotient rule.
|
||||||
|
|
||||||
|
Some terminologies which will be important to understand the rest:
|
||||||
|
- [[Holomorphic]]
|
||||||
|
- [[Entire]]
|
||||||
|
|
||||||
|
> [!example]
|
||||||
|
> Any polynomial $P(z) = \sum_{k = 0}^{n} a k z^{k}$ is an [[Entire|entire]] function (follows from the proposition).
|
||||||
|
|
||||||
|
## Example
|
||||||
|
Consider $f(z) = \; \mid z \mid^{2} = z \bar{z}$. This is not going to be [[Holomorphic|holomorphic]].
|
||||||
|
|
||||||
|
We compute:
|
||||||
|
$$\frac{f(z+ \Delta z) - f(z)}{\Delta z} = \frac{\mid z + \Delta z \mid^{2} = \mid z \mid^{2}}{\Delta z}$$
|
||||||
|
> [!note]
|
||||||
|
> We say that $z = x + iy$, hence $\Delta z = a + ib$.
|
||||||
|
|
||||||
|
![[Drawing 2025-03-24 11.00.27.excalidraw.dark.svg]]
|
||||||
|
%%[[Drawing 2025-03-24 11.00.27.excalidraw.md|🖋 Edit in Excalidraw]], and the [[Drawing 2025-03-24 11.00.27.excalidraw.light.svg|light exported image]]%%
|
||||||
|
$$= \frac{(x + a)^2 + (y + b)^2 - x^2 - y^2}{a + ib} = \frac{a^2 + b^2 + 2(ax + by)}{a + ib}.$$
|
||||||
|
Consider the real direction.
|
||||||
|
|
||||||
|
> [!note] Write
|
||||||
|
> $$\Delta z = \Delta x$$
|
||||||
|
|
||||||
|
$$\lim_{ \underbrace{\Delta x \to 0}_{a \to 0} } \frac{f(z + \Delta x) - f(z)}{\Delta x} = \lim_{ a \to 0 } \frac{a^2 + 2ax}{a} = 2x$$
|
||||||
|
|
||||||
|
Similarly for the imaginary axis
|
||||||
|
> [!note] Write
|
||||||
|
> $$\Delta z = i \Delta y$$
|
||||||
|
|
||||||
|
$$\lim_{ \underbrace{i \Delta y \to 0}_{b \to 0} } \frac{f(z + i \Delta y) - f(z)}{i \Delta y} = \lim_{ b \to 0 } \frac{b^2 + 2by}{ib} = -2iy.$$
|
||||||
|
This means that $f$ is **not** [[Differentiable|differentiable]] at $z \neq 0$.
|
||||||
|
# Cauchy-Riemann Equations
|
||||||
|
A [[Complex Functions|complex function]] $f(z)$ can be seen as a function of two real variables. Hence
|
||||||
|
$$f(z) = f(x + iy) = f(x, y).$$
|
||||||
|
When interpreted appropriately.
|
||||||
|
|
||||||
|
> [!example] For instance
|
||||||
|
> $$f(z) = z^2 = (x + iy)^2 = x^2 - y^2 + 2ixy$$
|
||||||
|
|
||||||
|
Suppose $f$ is [[Differentiable|differentiable]], we should expect **relations** between $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.
|
||||||
|
|
||||||
|
The same thing is also defined here: [[Cauchy-Riemann Equations]]
|
||||||
|
# Theorem
|
||||||
|
Let $z_{0} = x_{0} + iy_{0}$.
|
||||||
|
1. Suppose $f$ is [[Differentiable|differentiable]] at $z_{0}$. Then $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exists and have $$\frac{\partial f}{\partial x}(x_{0}, y_{0}) = -i \frac{\partial f}{\partial y} (x_{0}, y_{0}).$$
|
||||||
|
> [!info]- Visual Representation
|
||||||
|
>
|
||||||
|
> ![[Drawing 2025-03-24 11.13.06.excalidraw.dark.svg]]
|
||||||
|
%%[[Drawing 2025-03-24 11.13.06.excalidraw.md|🖋 Edit in Excalidraw]], and the [[Drawing 2025-03-24 11.13.06.excalidraw.light.svg|light exported image]]%%
|
||||||
|
|
||||||
|
2. Suppose $f$ is such that:
|
||||||
|
- $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exists at $(x_{0}, y_{0})$,
|
||||||
|
- they are [[Continuous|continuous]] in a small disk centred at $(x_{0}, y_{0})$.
|
||||||
|
Then $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ satisfy the condition above and $f$ is [[Differentiable|differentiable]] at $z_{0}$.
|
||||||
|
3. In both cases, we have $f'(z_{0}) = \frac{\partial f}{\partial x}(x_{0}, y_{0})$.
|
||||||
|
## Proof
|
||||||
|
### For 1.
|
||||||
|
Since $f$ is [[Differentiable|differentiable]] at $z_{0}$, the following limits exists
|
||||||
|
$$f'(z_{0}) = \lim_{ \Delta z \to 0 } \frac{f(z_{0} + \Delta z) - f(z_{0})}{\Delta z}.$$
|
||||||
|
> [!info]- Visual representation
|
||||||
|
> ![[Drawing 2025-03-24 11.32.41.excalidraw.dark.svg]]
|
||||||
|
%%[[Drawing 2025-03-24 11.32.41.excalidraw.md|🖋 Edit in Excalidraw]], and the [[Drawing 2025-03-24 11.32.41.excalidraw.light.svg|light exported image]]%%
|
||||||
|
|
||||||
|
$$f(z) = f(x, y)$$
|
||||||
|
|
||||||
|
First we take $\Delta z$ **real**, so $\Delta z = \Delta x$. Then
|
||||||
|
$$f'(z_{0}) = \lim_{ \Delta x \to 0 } \frac{f(x_{0} + \Delta x) - f(x_{0}, y_{0})}{\Delta x} = \frac{\partial f}{\partial x}(x_{0}, y_{0}).$$
|
||||||
|
|
||||||
|
|
||||||
|
Next take $\Delta z$ to be purely imaginary ($\Delta x, \Delta y \in \mathbb{R}$), so $\Delta z = i \Delta y$
|
||||||
|
($z_{0} + i \Delta y = x_{0} + i(y_{0} + \Delta y)$)
|
||||||
|
|
||||||
|
Then:
|
||||||
|
$$f'(z_{0}) = \lim_{ \Delta y \to 0 } \frac{f(x_{0}, y_{0} + \Delta y) = f(x_{0}, y_{0})}{i \Delta y} = -i \frac{\partial f}{\partial y}(x_{0}, y_{0}).$$
|
||||||
|
The two expressions must coincide, since $f$ is [[Differentiable|differentiable]] at $z_{0}$.
|
||||||
|
### For 2.
|
||||||
|
It is more complicated to prove. You can find the proof in the references on Canvas for the course.
|
||||||
|
### For 3.
|
||||||
|
Shown in [[#For 1.]]
|
||||||
|
# Decomposition
|
||||||
|
We can decompose any $f : D \to \mathbb{C}$ into its **real** and **imaginary** part. We write
|
||||||
|
$$f(z) = f(x, y) = u(x, y) + iv(x, y).$$
|
||||||
|
or $\mathrm{Re}f = u$ and $\mathrm{Im} f = v$
|
||||||
|
## Corollary
|
||||||
|
With notation as before, we have
|
||||||
|
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y},\ \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}.$$
|
||||||
|
### Proof
|
||||||
|
By the [[#Theorem|previous theorem]], we have
|
||||||
|
$$\frac{\partial f}{\partial x} = -i \frac{\partial f}{\partial y}.$$
|
||||||
|
Write $f = u + iv$. Then
|
||||||
|
$$\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = -i \frac {\partial u}{\partial y} + \frac{\partial v}{\partial y}.$$
|
||||||
|
Comparing real and imaginary parts gives the result.
|
||||||
|
## Example
|
||||||
|
Consider $f(z) = z^2$.
|
||||||
|
This is seen to be [[Holomorphic|holomorphic]] (in at least two ways).
|
||||||
|
|
||||||
|
One way is
|
||||||
|
$$f'(z) = (zz)' = z'z + zz' = zz.$$
|
||||||
|
|
||||||
|
Another way is to use the [[Cauchy-Riemann Equations]]. We have
|
||||||
|
$$z^2 = (x + iy)^2 = (x^2 - y^2) + 2ixy.$$
|
||||||
|
So here
|
||||||
|
$$\mathrm{Re}f = u = x^2 - y^2,\ \mathrm{Im}f = v = 2xy.$$
|
||||||
|
So one checks that $u$ and $v$ satisfy the [[Cauchy-Riemann Equations]].
|
||||||
|
Since the derivatives are [[Continuous|continuous]], we get that $f = u + iv$ is [[Holomorphic|holomorphic]].
|
@ -26,4 +26,5 @@ title: ACIT4330 Lecture Notes
|
|||||||
- [[Lecture 16]]
|
- [[Lecture 16]]
|
||||||
- [[Lecture 17 - Lp Spaces]]
|
- [[Lecture 17 - Lp Spaces]]
|
||||||
# Complex Analysis
|
# Complex Analysis
|
||||||
- [[Lecture 18 - Complex Analysis]]
|
- [[Lecture 18 - Complex Analysis]]
|
||||||
|
- [[Lecture 19 - Derivatives]]
|