diff --git a/content/Definitions/Measure Theory/Sigma-Algebra/Borel Sets.md b/content/Definitions/Measure Theory/Sigma-Algebra/Borel Sets.md index 8dff70a3..8371e57e 100644 --- a/content/Definitions/Measure Theory/Sigma-Algebra/Borel Sets.md +++ b/content/Definitions/Measure Theory/Sigma-Algebra/Borel Sets.md @@ -1,2 +1,2 @@ # Definition -The $\sigma$-algebra generated by the [[Open Sets|open sets]] in a [[Topological Space|topological space]] $X$ is the $\sigma$-algebra of **Borel Sets** of $X$. \ No newline at end of file +The $\sigma$[[Sigma-Algebra|-algebra]] generated by the [[Open Sets|open sets]] in a [[Topological Space|topological space]] $X$ is the $\sigma$[[Sigma-Algebra|-algebra]] of **Borel Sets** of $X$. \ No newline at end of file diff --git a/content/Definitions/Measure Theory/Sigma-Algebra/Borel Sigma-Algebra.md b/content/Definitions/Measure Theory/Sigma-Algebra/Borel Sigma-Algebra.md index 518a4adb..8fb8a268 100644 --- a/content/Definitions/Measure Theory/Sigma-Algebra/Borel Sigma-Algebra.md +++ b/content/Definitions/Measure Theory/Sigma-Algebra/Borel Sigma-Algebra.md @@ -1 +1,2 @@ -**Borel $\sigma$-algebra** on a [[Topological Space|topological space]] $X$ is the one generated by $\tau$. \ No newline at end of file +# Definition +**Borel $\sigma$-algebra** on a [[Topological Space|topological space]] $X$ is the one generated by the [[Open Sets|open sets]] $\tau$. \ No newline at end of file diff --git a/content/Excalidraw/Lecture 15/Drawing 2025-03-06 12.25.26.excalidraw.dark.png b/content/Excalidraw/Lecture 15/Drawing 2025-03-06 12.25.26.excalidraw.dark.png index fc0d3d28..43943330 100644 Binary files a/content/Excalidraw/Lecture 15/Drawing 2025-03-06 12.25.26.excalidraw.dark.png and b/content/Excalidraw/Lecture 15/Drawing 2025-03-06 12.25.26.excalidraw.dark.png differ diff --git a/content/Excalidraw/Lecture 15/Drawing 2025-03-06 12.25.26.excalidraw.dark.svg b/content/Excalidraw/Lecture 15/Drawing 2025-03-06 12.25.26.excalidraw.dark.svg index de644f17..c305cbc3 100644 --- a/content/Excalidraw/Lecture 15/Drawing 2025-03-06 12.25.26.excalidraw.dark.svg +++ b/content/Excalidraw/Lecture 15/Drawing 2025-03-06 12.25.26.excalidraw.dark.svg @@ -1,2 +1,2 @@ \ No newline at end of file + \ No newline at end of file diff --git a/content/Excalidraw/Lecture 15/Drawing 2025-03-06 12.25.26.excalidraw.light.png b/content/Excalidraw/Lecture 15/Drawing 2025-03-06 12.25.26.excalidraw.light.png index 92e7d45b..d22e7560 100644 Binary files a/content/Excalidraw/Lecture 15/Drawing 2025-03-06 12.25.26.excalidraw.light.png and b/content/Excalidraw/Lecture 15/Drawing 2025-03-06 12.25.26.excalidraw.light.png differ diff --git a/content/Excalidraw/Lecture 15/Drawing 2025-03-06 12.25.26.excalidraw.light.svg b/content/Excalidraw/Lecture 15/Drawing 2025-03-06 12.25.26.excalidraw.light.svg index 8ba0fb5f..14ba77c0 100644 --- a/content/Excalidraw/Lecture 15/Drawing 2025-03-06 12.25.26.excalidraw.light.svg +++ b/content/Excalidraw/Lecture 15/Drawing 2025-03-06 12.25.26.excalidraw.light.svg @@ -1,2 +1,2 @@ \ No newline at end of file + \ No newline at end of file diff --git a/content/Excalidraw/Lecture 15/Drawing 2025-03-06 13.17.23.excalidraw.dark.png b/content/Excalidraw/Lecture 15/Drawing 2025-03-06 13.17.23.excalidraw.dark.png new file mode 100644 index 00000000..ecc7d390 Binary files /dev/null and b/content/Excalidraw/Lecture 15/Drawing 2025-03-06 13.17.23.excalidraw.dark.png differ diff --git a/content/Excalidraw/Lecture 15/Drawing 2025-03-06 13.17.23.excalidraw.dark.svg b/content/Excalidraw/Lecture 15/Drawing 2025-03-06 13.17.23.excalidraw.dark.svg new file mode 100644 index 00000000..5299c491 --- /dev/null +++ b/content/Excalidraw/Lecture 15/Drawing 2025-03-06 13.17.23.excalidraw.dark.svg @@ -0,0 +1,2 @@ +XAB \ No newline at end of file diff --git a/content/Excalidraw/Lecture 15/Drawing 2025-03-06 13.17.23.excalidraw.light.png b/content/Excalidraw/Lecture 15/Drawing 2025-03-06 13.17.23.excalidraw.light.png new file mode 100644 index 00000000..3efceb2b Binary files /dev/null and b/content/Excalidraw/Lecture 15/Drawing 2025-03-06 13.17.23.excalidraw.light.png differ diff --git a/content/Excalidraw/Lecture 15/Drawing 2025-03-06 13.17.23.excalidraw.light.svg b/content/Excalidraw/Lecture 15/Drawing 2025-03-06 13.17.23.excalidraw.light.svg new file mode 100644 index 00000000..c2383d60 --- /dev/null +++ b/content/Excalidraw/Lecture 15/Drawing 2025-03-06 13.17.23.excalidraw.light.svg @@ -0,0 +1,2 @@ +XAB \ No newline at end of file diff --git a/content/Excalidraw/Lecture 15/Drawing 2025-03-06 13.41.17.excalidraw.dark.png b/content/Excalidraw/Lecture 15/Drawing 2025-03-06 13.41.17.excalidraw.dark.png new file mode 100644 index 00000000..4374ebce Binary files /dev/null and b/content/Excalidraw/Lecture 15/Drawing 2025-03-06 13.41.17.excalidraw.dark.png differ diff --git a/content/Excalidraw/Lecture 15/Drawing 2025-03-06 13.41.17.excalidraw.dark.svg b/content/Excalidraw/Lecture 15/Drawing 2025-03-06 13.41.17.excalidraw.dark.svg new file mode 100644 index 00000000..1e2acc42 --- /dev/null +++ b/content/Excalidraw/Lecture 15/Drawing 2025-03-06 13.41.17.excalidraw.dark.svg @@ -0,0 +1,2 @@ + \ No newline at end of file diff --git a/content/Excalidraw/Lecture 15/Drawing 2025-03-06 13.41.17.excalidraw.light.png b/content/Excalidraw/Lecture 15/Drawing 2025-03-06 13.41.17.excalidraw.light.png new file mode 100644 index 00000000..e42c9ae8 Binary files /dev/null and b/content/Excalidraw/Lecture 15/Drawing 2025-03-06 13.41.17.excalidraw.light.png differ diff --git a/content/Excalidraw/Lecture 15/Drawing 2025-03-06 13.41.17.excalidraw.light.svg b/content/Excalidraw/Lecture 15/Drawing 2025-03-06 13.41.17.excalidraw.light.svg new file mode 100644 index 00000000..dbedf27d --- /dev/null +++ b/content/Excalidraw/Lecture 15/Drawing 2025-03-06 13.41.17.excalidraw.light.svg @@ -0,0 +1,2 @@ + \ No newline at end of file diff --git a/content/Lectures/Lecture 12 - Induced Topologies.md b/content/Lectures/Lecture 12 - Induced Topologies.md index bcf92983..0802d73a 100644 --- a/content/Lectures/Lecture 12 - Induced Topologies.md +++ b/content/Lectures/Lecture 12 - Induced Topologies.md @@ -24,7 +24,7 @@ By assumption $f_{n}(x_{i}) \to f_{n}(x)$, so $f_{n}(x_{i}) \in A_{n} \; \forall Then $x_{i} \in \cap f^{-1}_{n}(A_{n}) \subset A$ for all $i \geq j$, so $x_i \to x$. QED. -# COR +# Corollary $X$ has [[Initial Topology|initial topology]] induced by $F$. Say $Z$ is a [[Topological Space|topological space]], then: $g : Z \to X$ is [[Continuous|continuous]] $f \circ g$ is [[Continuous|continuous]] $\forall f \in F$. @@ -67,7 +67,7 @@ Then $f^{-1}(U)$ and $f^{-1}(V)$ will be disjoint neighbourhoods of $x$ and $y$. > Which is not possible QED. -# COR +# Corollary A product of [[Hausdorff]] spaces is [[Hausdorff]] in the [[Product Topology|product topology]]. $\Pi X_{\lambda}$ diff --git a/content/Lectures/Lecture 15.md b/content/Lectures/Lecture 15.md index b18d1997..b1764c03 100644 --- a/content/Lectures/Lecture 15.md +++ b/content/Lectures/Lecture 15.md @@ -110,3 +110,67 @@ Set $s_{n} = h_{n} \circ f$. ![[Drawing 2025-03-06 12.25.26.excalidraw.dark.svg]] %%[[Drawing 2025-03-06 12.25.26.excalidraw.md|🖋 Edit in Excalidraw]], and the [[Drawing 2025-03-06 12.25.26.excalidraw.light.svg|light exported image]]%% +--- +Exercise part of the session. + +These exercises are from Exercise 8. +# Question 3 +Prove $\mu(A) \leq \mu(B)$ when $A \subset B$ +## Proof +Have $B = A \cup (\underbrace{A^{\complement} \cap B}_{B \setminus A})$, so +> [!example]- What this set looks like +> ![[Drawing 2025-03-06 13.17.23.excalidraw.dark.svg]] +%%[[Drawing 2025-03-06 13.17.23.excalidraw.md|🖋 Edit in Excalidraw]], and the [[Drawing 2025-03-06 13.17.23.excalidraw.light.svg|light exported image]]%% + +$\mu(B) = \mu(A) + \underbrace{\mu(B \setminus A)}_{\geq 0}$ +$\implies \mu(B) >+ \mu(A)$. +# Question 4 +Show that if $X$ has a $\sigma$[[Sigma-Algebra|-algebra]] and $f : X \to Y$ set. Then the collection $N$ of subsets $A \subset Y$ such that $f^{-1}(A)$ [[Measurable|measurable]], is a $\sigma$[[Sigma-Algebra|-algebra]]. + +$N \equiv \{ A \subset Y \, | \, f^{-1}(A) \in M \}$ +prove that $N$ is a $\sigma$[[Sigma-Algebra|-algebra]]. +## Proof +1. Have $\emptyset \in N$ since $f^{-1}(\emptyset) = \emptyset \in M$. +2. If $A \in N$, then $f^{-1}(A) \in M$, so $f^{-1}(A)^{\complement} \in M = f^{-1}(A^{\complement}) \implies A^{\complement} \in N$. +3. If $A_{n} \in N$, then $f^{-1}(A_{n} \in M)$, so $f^{-1}(\cup A_{n}) = \cup f^{-1}(A_{n}) \in M$, so $\cup A_{n} \in N$. + +# A question I don't know the number of +Say $f : X \to Y$ and they are [[Topological Space|topological spaces]]. +Show that if $f$ is [[Measurable|measurable]], then $f^{-1}(A)$ is [[Borel Measurable|Borel measurable]] for any [[Borel Sets|Borel set]] $A \subset Y$. +## Proof +Consider $N = \{ A \subset Y \, | \, f^{-1}(A)\ \text{Borel} \}$. This is a $\sigma$[[Sigma-Algebra|-algebra]]. +> [!example]- +> ![[Drawing 2025-03-06 13.41.17.excalidraw.dark.svg]] +%%[[Drawing 2025-03-06 13.41.17.excalidraw.md|🖋 Edit in Excalidraw]], and the [[Drawing 2025-03-06 13.41.17.excalidraw.light.svg|light exported image]]%% + +It contains all the [[Open Sets|open sets]] in $Y$ since $f$ is [[Measurable|measurable]] and then $f^{-1}(V)$ is [[Borel Measurable|Borel measurable]] for $V$ [[Open Sets|open]]. + +Hence $N$ contains all the [[Borel Sets|Borel sets]] in $Y$. If $A$ is [[Borel Sets|Borel]], then $A \in N$, so $f^{-1}(A)$ is [[Borel Sets|Borel]]. (**Note**: not sure if on this if the "Borel"s are about them being Borel sets or Borel measurable) +# Question 5 +$X$ with $\sigma$[[Sigma-Algebra|-algebra]] $M$. +$f: X \to [0, \infty]$ is [[Measurable|measurable]] $\iff f^{-1}(\langle a, \infty]) \in M,\ \forall a \gt 0$. +## Proof +### $\Rightarrow$ +"Obvious". +### $\Leftarrow$ +In $[0, \infty]$ [[Ball|balls]] are $[0, a\rangle$, $\langle a, \infty ]$, $[0, \infty]$, or $\langle a, b \rangle$ for $a, b \in \mathbb{R}$. + +Any open set in $[0, \infty]$ is a [[Countable|countable]] union of these "building blocks". + +Checking they belong to $M$: +- $[0, a]$ +- $[0, b\rangle \cap \langle a, \infty = \langle a, b \rangle$ +- $[0, a \rangle = \cup_{n=1}^{\infty}\left[ 0, a-\frac{1}{n} \right]$ +QED. + +$f_{n} : X \to [0, \infty]$ is [[Measurable|measurable]] +$f \equiv \sup f_{n}$ is [[Measurable|measurable]] +> [!note] Can also use [[Infimum|infimum]] instead +> $\inf f_{n} = -\sup(-f_{n})$ + +Now need to check if $f^{-1}(\langle a, \infty ])$ is [[Measurable|measurable]] and is in $M$ + +$f^{-1}(\langle a, \infty ]) = \{ x \in X \, | \, f(x) \gt a \}$ +$= \cup_{n}f_{n}^{-1}(\langle a, \infty ]) \in M$ +Why is the set and the union both the same? +$\cup_{n} \{ x \in X \, | \, f_{n}(x) \gt a \} = \{ x \in X \, | \, f_{n}(x) \gt a\ \forall n \}$